207 research outputs found

    The potential of artificial aging for modelling of natural aging processes of ballpoint ink

    Get PDF
    Artificial aging has been used to reproduce natural aging processes in an accelerated pace. Questioned documents were exposed to light or high temperature in a well-defined manner in order to simulate an increased age. This may be used to study the aging processes or to date documents by reproducing their aging curve. Ink was studied especially because it is deposited on the paper when a document, such as a contract, is produced. Once on the paper, aging processes start through degradation of dyes, solvents drying and resins polymerisation. Modelling of dye's and solvent's aging was attempted. These processes, however, follow complex pathways, influenced by many factors which can be classified as three major groups: ink composition, paper type and storage conditions. The influence of these factors is such that different aging states can be obtained for an identical point in time. Storage conditions in particular are difficult to simulate, as they are dependent on environmental conditions (e.g. intensity and dose of light, temperature, air flow, humidity) and cannot be controlled in the natural aging of questioned documents. The problem therefore lies more in the variety of different conditions a questioned document might be exposed to during its natural aging, rather than in the simulation of such conditions in the laboratory. Nevertheless, a precise modelling of natural aging curves based on artificial aging curves is obtained when performed on the same paper and ink. A standard model for aging processes of ink on paper is therefore presented that is based on a fit of aging curves to a power law of solvent concentrations as a function of time. A mathematical transformation of artificial aging curves into modelled natural aging curves results in excellent overlap with data from real natural aging processes

    La datation des traces digitales (partie II): proposition d'une approche formelle

    Get PDF
    «Quel est l'âge de cette trace digitale?» Cette question est relativement souvent soulevée durant une investigation ou au tribunal, lorsque la personne suspectée admet avoir laissé ses traces sur une scène de crime mais prétend l'avoir fait à un autre moment que celui du crime et pour une raison innocente. La première partie de cet article mettait en évidence le manque de consensus actuel dans les réponses données à cette question par les experts du domaine, ainsi que le fait qu'aucune méthodologie n'est pour l'heure validée et acceptée par la communauté forensique. C'est pourquoi ce deuxième article propose une approche formelle et pragmatique afin d'aborder la question de la datation des traces digitales en se basant sur la recherche actuelle dans le domaine du vieillissement de composés lipidiques détectés dans les traces digitales. Cette approche permet ainsi d'identifier quel type d'information le scientifique serait capable d'apporter aux enquêteurs et/ou à la Cour lors de cas de datation des traces digitales à l'heure actuelle, dans quelles conditions, et quels sont les développements encore nécessaires

    LC-MS method development and comparison of sampling materials for the analysis of organic gunshot residues

    Get PDF
    This study aimed at comparing the efficiency of various sampling materials for the collection and subsequent analysis of organic gunshot residues (OGSR). To the best of our knowledge, it is the first time that sampling devices were investigated in detail for further quantitation of OGSR by LC-MS. Seven sampling materials, namely two "swab"-type and five "stub"-type collection materials, were tested. The investigation started with the development of a simple and robust LC-MS method able to separate and quantify molecules typically found in gunpowders, such as diphenylamine or ethylcentralite. The evaluation of sampling materials was then systematically carried out by first analysing blank extracts of the materials to check for potential interferences and determining matrix effects. Based on these results, the best four materials, namely cotton buds, polyester swabs, a tape from 3M and PTFE were compared in terms of collection efficiency during shooting experiments using a set of 9 mm Luger ammunition. It was found that the tape was capable of recovering the highest amounts of OGSR. As tape-lifting is the technique currently used in routine for inorganic GSR, OGSR analysis might be implemented without modifying IGSR sampling and analysis procedure

    Explorer les intersections entre la science forensique et la criminologie au travers de la temporalité de trois types d'actions de contrôle social

    Get PDF
    Our contribution aims to explore some intersections between forensic science and criminology through the notion of time. The two disciplines analyse the vestiges of illicit activities in order to reconstruct and understand the past, and occasionally to prevent future harms. While forensic science study the material and digital traces as signs of criminal activities and repetitions, criminology contributes to the acquisition of knowledge through its analysis of crime, its authors and victims, as well as social (re)actions to harmful behaviours. Exploratory, our contribution proposes a conceptual delimitation of the notion of time considering its importance in the study of criminality and harms. Through examples, we propose a "crimino-forensic" analysis of three types of actions of social control - prevention, investigation and intelligence - through their respective temporality (before, near or during and after the criminal activity or harm). The temporal issues of the different methodologies developed to appreciate the efficiency of these actions are also addressed to highlight the connections between forensic science and criminology. This attempt to classify the relations between different times and actions of social control are discussed through the multiple benefits and challenges carried out by the formalisation of fusing those two sciences. Notre contribution vise à explorer quelques intersections entre la science forensique (ou criminalistique) et la criminologie au travers de la notion de temps. En effet, les deux disciplines ont en commun qu'elles analysent les vestiges du phénomène criminel pour tenter de reconstruire et comprendre le passé et parfois prévenir de futurs incidents. Alors que la science forensique étudie les traces matérielles et numériques comme signe d'activités et de répétitions criminelles, la criminologie contribue à l'avancée des connaissances en ce domaine par son analyse des comportements contraires aux normes, de leurs auteurs et de leurs victimes, ainsi que des (ré)actions sociales à ces comportements. A but exploratoire, notre contribution propose une délimitation conceptuelle de la notion de temps en regard de l'importance que revêtent ses différentes manifestations dans l'étude de la criminalité. A l'appui d'exemples, nous proposons une analyse « crimino-forensique » de trois types d'action de contrôle social - la prévention, l'investigation et le renseignement - en fonction de leur temporalité respective (avant, proche voire pendant et après l'activité criminelle). Les enjeux temporels entourant les différentes stratégies méthodologiques développées pour apprécier l'efficacité de ces actions sont aussi abordés pour mettre en évidence des pistes d'intégration entre la science forensique et la criminologie. Cet essai de classification des relations entre les temps et ces trois actions de contrôle social est discuté sous l'angle des bénéfices, multiples, mais aussi des défis, que pose la formalisation des liens entre ces deux disciplines des sciences criminelles

    A comparative study of ballpoint ink ageing parameters using GC/MS.

    Get PDF
    For more than a decade scientists tried to develop methods capable of dating ink by monitoring the loss of phenoxyethanol (PE) over time. While many methods were proposed in the literature, few were really used to solve practical cases and they still raise much concern within the scientific community. In fact, due to the complexity of ink drying processes it is particularly difficult to find a reliable ageing parameter to reproducibly follow ink ageing. Moreover, systematic experiments are required in order to evaluate how different factors actually influence the results over time. Therefore, this work aimed at evaluating the capacity of four different ageing parameters to reliably follow ink ageing over time: (1) the quantity of solvent PE in an ink line, (2) the relative peak area (RPA) normalising the PE results using stable volatile compounds present in the ink formulation, (3) the solvent loss ratio (R%) calculated from PE results obtained by the analyses of naturally and artificially aged samples, (4) a modified solvent loss ratio version (R%*) calculated from RPA results. After the determination of the limits of reliable measurements of the analytical method, the repeatability of the different ageing parameters was evaluated over time, as well as the influence of ink composition, writing pressure and storage conditions on the results. Surprisingly, our results showed that R% was not the most reliable parameter, as it showed the highest standard deviation. Discussion of the results in an ink dating perspective suggests that other proposed parameters, such as RPA values, may be more adequate to follow ink ageing over time

    Time since discharge of 9mm cartridges by headspace analysis, part 2: Ageing study and estimation of the time since discharge using multivariate regression.

    Get PDF
    Estimating the time since discharge of spent cartridges can be a valuable tool in the forensic investigation of firearm-related crimes. To reach this aim, it was previously proposed that the decrease of volatile organic compounds released during discharge is monitored over time using non-destructive headspace extraction techniques. While promising results were obtained for large-calibre cartridges (e.g., shotgun shells), handgun calibres yielded unsatisfying results. In addition to the natural complexity of the specimen itself, these can also be attributed to some selective choices in the methods development. Thus, the present series of papers aimed to systematically evaluate the potential of headspace analysis to estimate the time since discharge of cartridges through the use of more comprehensive analytical and interpretative techniques. Following the comprehensive optimisation and validation of an exhaustive headspace sorptive extraction (HSSE) method in the first part of this work, the present paper addresses the application of chemometric tools in order to systematically evaluate the potential of applying headspace analysis to estimate the time since discharge of 9mm Geco cartridges. Several multivariate regression and pre-treatment methods were tested and compared to univariate models based on non-linear regression. Random forests (RF) and partial least squares (PLS) proceeded by pairwise log-ratios normalisation (PLR) showed the best results, and allowed to estimate time since discharge up to 48h of ageing and to differentiate recently fired from older cartridges (e.g., less than 5h compared to more than 1-2 days). The proposed multivariate approaches showed significant improvement compared to univariate models. The effects of storage conditions were also tested and results demonstrated that temperature, humidity and cartridge position should be taken into account when estimating the time since discharge

    Time since discharge of 9mm cartridges by headspace analysis, part 1: Comprehensive optimisation and validation of a headspace sorptive extraction (HSSE) method.

    Get PDF
    Estimating the time since discharge of spent cartridges can be a valuable tool in the forensic investigation of firearm-related crimes. To reach this aim, it was previously proposed that the decrease of volatile organic compounds released during discharge is monitored over time using non-destructive headspace extraction techniques. While promising results were obtained for large-calibre cartridges (e.g., shotgun shells), handgun calibres yielded unsatisfying results. In addition to the natural complexity of the specimen itself, these can also be attributed to some selective choices in the methods development. Thus, the present series of paper aimed to more systematically evaluate the potential of headspace analysis to estimate the time since discharge of cartridges through the use of more comprehensive analytical and interpretative techniques. Specifically, in this first part, a method based on headspace sorptive extraction (HSSE) was comprehensively optimised and validated, as the latter recently proved to be a more efficient alternative than previous approaches. For this purpose, 29 volatile organic compounds were preliminary selected on the basis of previous works. A multivariate statistical approach based on design of experiments (DOE) was used to optimise variables potentially involved in interaction effects. Introduction of deuterated analogues in sampling vials was also investigated as strategy to account for analytical variations. Analysis was carried out by selected ion mode, gas chromatography coupled to mass spectrometry (GC-MS). Results showed good chromatographic resolution as well as detection limits and peak area repeatability. Application to 9mm spent cartridges confirmed that the use of co-extracted internal standards allowed for improved reproducibility of the measured signals. The validated method will be applied in the second part of this work to estimate the time since discharge of 9mm spent cartridges using multivariate models

    Identification of Wax Esters in Latent Print Residues by Gas Chromatography-Mass Spectromertry and Their Potential Use as Aging Parameters

    Get PDF
    Recent studies show that the composition of fingerprint residue varies significantly from the same donor as well as between donors. This variability is a major drawback in latent print dating issues. This study aimed, therefore, at the definition of a parameter that is less variable from print to print, using a ratio of peak area of a target compound degrading over time divided by the summed area of peaks of more stable compounds also found in latent print residues.Gas chromatography-mass spectrometry (GC/MS) analysis of the initial lipid composition of latent prints identifies four main classes of compounds that can be used in the definition of an aging parameter: fatty acids, sterols, sterol precursors, and wax esters (WEs). Although the entities composing the first three groups are quite well known, those composing WEs are poorly reported. Therefore, the first step of the present work was to identify WE compounds present in latent print residues deposited by different donors. Of 29 WEs recorded in the chromatograms, seven were observed in the majority of samples.The identified WE compounds were subsequently used in the definition of ratios in combination with squalene and cholesterol to reduce the variability of the initial composition between latent print residues from different persons and more particularly from the same person. Finally, the influence of a latent print enhancement process on the initial composition was studied by analyzing traces after treatment with magnetic powder, 1,2-indanedione, and cyanoacrylate

    Estimating the time since discharge of spent cartridges: a logical approach fro interpreting the evidence

    Get PDF
    Estimating the time since discharge of a spent cartridge or a firearm can be useful in criminal situa-tions involving firearms. The analysis of volatile gunshot residue remaining after shooting using solid-phase microextraction (SPME) followed by gas chromatography (GC) was proposed to meet this objective. However, current interpretative models suffer from several conceptual drawbacks which render them inadequate to assess the evidential value of a given measurement. This paper aims to fill this gap by proposing a logical approach based on the assessment of likelihood ratios. A probabilistic model was thus developed and applied to a hypothetical scenario where alternative hy-potheses about the discharge time of a spent cartridge found on a crime scene were forwarded. In order to estimate the parameters required to implement this solution, a non-linear regression model was proposed and applied to real published data. The proposed approach proved to be a valuable method for interpreting aging-related data

    Aging of target lipid parameters in fingermark residue using GC/MS: effects of influence factors and perspectives for dating purposes

    Get PDF
    Despite the recurrence of fingermark dating issues and the research conducted on fingermark composition and aging, no dating methodology has yet been developed and validated. In order to further evaluate the possibility of developing dating methodologies based on the fingermark composition, this research proposed an in-depth study of the aging of target lipid parameters found in fingermark residue and exposed to different in fluence factors. The selected analytical technique was gas chromatography coupled with mass spectrometry (GC/MS). The effects of donor, substrate and enhancement techniques on the selected parameters were firstly evaluated. These factors were called known factors, as their value could be obtained in real caseworks. Using principal component analysis (PCA) and univariate exponential regression, this study highlighted the fact that the effects of these factors were larger than the aging effects, thus preventing the observation of relevant aging patterns. From a fingermark dating perspective, the specific value of these known factors should thus be included in aging models newly built for each case. Then, the effects of deposition moment, pressure, temperature and lighting were also evaluated. These factors were called unknown factors, as their specific value would never be precisely obtained in caseworks. Aging models should thus be particularly robust to their effects and for this reason, different chemometric tools were tested: PCA, univariate exponentialregression and partial least square regression(PLSR). While the first two models allowed observing interesting aging patterns regardless of the value of the applied influence factors, PLSR gave poorer results, as large deviations were obtained. Finally, in order to evaluate the potential of such modelling in realistic situations, blind analyses were carried out on eight test fingermarks. The age of five of them was correctly estimated using soft independent modelling of class analogy analysis (SIMCA) based on PCA classes, univariate exponential linear regression and PLSR. Furthermore, a probabilistic approach using the calculation of likelihood ratios (LR) through the construction of a Bayesian network was also tested. While the age of all test fingermarks were correctly evaluated when the storage conditions were known, the results were not significant when these conditions were unknown. Thus, this model clearly highlighted the impact of storage conditions on correct age evaluation. This research showed that reproducible aging modelling could be obtained based on fingermark residue exposed to influence factors, as well as promising age estimations. However, the proposed models are still not applicable in practice. Further studies should be conducted concerning the impact of influence factors (in particular, storage conditions) in order to precisely evaluate in which conditions significant evaluations could be obtained. Furthermore, these models should be properly validated before any application in real caseworks could be envisaged
    corecore